Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.
نویسندگان
چکیده
The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment.
منابع مشابه
Frequency response properties of primary afferent neurons in the posterior lateral line system of 1 larval zebrafish
19 The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the 20 physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish 21 (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical 22 deflections of individual superficial neuromasts. We used two types of stimulation p...
متن کاملAfferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish.
The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activit...
متن کاملOrigin and early development of the posterior lateral line system of zebrafish.
The lateral line system of teleosts has recently become a model system to study patterning and morphogenesis. However, its embryonic origins are still not well understood. In zebrafish, the posterior lateral line (PLL) system is formed in two waves, one that generates the embryonic line of seven to eight neuromasts and 20 afferent neurons and a second one that generates three additional lines d...
متن کاملOrganization and physiology of posterior lateral line afferent neurons in larval zebrafish.
The lateral line system of larval zebrafish can translate hydrodynamic signals from the environment to guide body movements. Here, I demonstrate a spatial relationship between the organization of afferent neurons in the lateral line ganglion and the innervation of neuromasts along the body. I developed a whole cell patch clamp recording technique to show that afferents innervate multiple direct...
متن کاملActivity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish.
The development of functional neural circuits requires that connections between neurons be established in a precise manner. The mechanisms by which complex nervous systems perform this daunting task remain largely unknown. In the posterior lateral line of larval zebrafish, each afferent neuron forms synaptic contacts with hair cells of a common hair-bundle polarity. We investigated whether affe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 113 2 شماره
صفحات -
تاریخ انتشار 2015